User’s Guide for
Quantum-ESPRESSO

(version 3.0)

Contents

2.1 Configure] . . ... ... ..

[2.1.2  Manual configuration|
2.2 Compile] . . . .. ... ...
[2.3  Run examples| . . . . .. ..

(3 Running on parallel machines|

[4  Pseudopotentials|

DEMOCRITOS

- INFM



sing SC

b.1.1 Inmputdatal. . . . .. ... ... ... ...
[b.1.2  Typical cases| . . . . . .. . ... ... ... ... ...
(.2 Phonon calculations. . . . . . . .. ... oL
[>.2.1  Calculation of interatomic force constants in real space
[5.2.2  Calculation of electron-phonon interaction coefficients| .
[5.3  Post-processing| . . . . . ... ...

[6 Using CPJ

[7 Performance issues (PWscf)|

7.1 CPU time requirements|. . . . . . . . . . . . ... ... ....
(7.2 Memory requirements|. . . . . . .. ... ...
[7.3  File space requirements|. . . . . ... ... ...

[7.4 Parallelization issues . . . . . . . . . . . . . .. ... .. ...

(8

Troubleshooting (PWscf)|

29
29
29
30
32
32
33
33

35

43
43
44
44
45

47



1 Introduction

This guide covers the installation and usage of Quantum-ESPRESSO (opEn-
Source Package for Research in Electronic Structure, Simulation, and Opti-
mization), version 3.0.

The Quantum-ESPRESSO package contains the following codes for the
calculation of electronic-structure properties within Density-Functional The-
ory, using a Plane-Wave basis set and pseudopotentials:

o PWscf (Plane-Wave Self-Consistent Field).
e CP (Car-Parrinello).

and the following auxiliary codes:

e PWgui (Graphical User Interface for PWscf): a graphical interface for
producing input data files for PWscf.

e atomic: a program for atomic calculations and generation of pseudopo-
tentials.

e iotk: an Input-Output ToolKit.

The Quantum-ESPRESSO codes work on many different types of Unix ma-
chines, including parallel machines using Message Passing Interface (MPI).
Running Quantum-ESPRESSO on Mac OS X and MS-Windows is also pos-
sible: see section [2] “Installation”.

Further documentation, beyond what is provided in this guide, can be
found in:

e the Doc/ directory of the Quantum-ESPRESSO distribution
In particular the INPUT_* files contain the detailed listing of available
input variables and cards.

e the various README files found in the distribution

e the Pw_forum mailing list (pw_forum@pwscf .org)

You can subscribe to this list and browse and search its archives from
the PWscf web site (http://www.pwsct.org/). Only subscribed users
can post. Please search the archives before posting: your question may
have already been answered.

e the “Scientific Software” page of the Democritos web site
(http://www.democritos.it/scientific.php)

This guide does not explain solid state physics and its computational meth-
ods. If you want to learn that, read a good textbook.

3


mailto:pw_forum@pwscf.org
http://www.pwscf.org/
http://www.democritos.it/scientific.php

1.1

Codes

PWscf can currently perform the following kinds of calculations:

ground-state energy and one-electron (Kohn-Sham) orbitals
atomic forces, stresses, and structural optimization

molecular dynamics on the ground-state Born-Oppenheimer surface,
also with variable-cell

Nudged Elastic Band (NEB) and Fourier String Method Dynamics
(SMD) for energy barriers and reaction paths

phonon frequencies and eigenvectors at a generic wave vector, using
Density-Functional Perturbation Theory

effective charges and dielectric tensors
electron-phonon interaction coefficients for metals
interatomic force constants in real space
third-order anharmonic phonon lifetimes

Infrared and Raman (nonresonant) cross section

macroscopic polarization via Berry Phase

All of the above work for both insulators and metals, in any crystal structure,
for many exchange-correlation functionals (including spin polarization and
LDA+U), for both norm-conserving (Hamann-Schliiter-Chiang) pseudopo-
tentials in separable form, and — with very few exceptions — for Ultrasoft
(Vanderbilt) pseudopotentials. Non-colinear magnetism and spin-orbit inter-
actions are also implemented. Finite electric fields are implemented in both
the supercell and the “modern theory of polarization” approaches (the latter
is still at an experimental stage). Various postprocessing and data analysis
programs are available.
CP can currently perform the following kinds of calculations:

Car-Parrinello molecular dynamics simulation
geometry optimization by damped dynamics

constant-temperature simulation with Nose thermostats (including
Nose-Hoover chains for each atom)

4



e variable-cell (Parrinello-Rahman) dynamics
e Nudged Elastic Band (NEB) for energy barriers and reaction paths
e String Method Dynamics (in real space)

e dynamics with Wannier functions and under finite electric fields

Spin-polarized calculations. CP works with both norm-conserving and Ultra-
soft pseudopotentials. There are implementations of a dynamics for metals
using conjugate-gradient algorithms, and of the meta-GGA functionals. Both
are at an experimental stage.

1.2 People

The maintenance and further development of the Quantum-ESPRESSO code
is promoted by the DEMOCRITOS National Simulation Center of INFM
(Italian institute for condensed matter physics) under the coordination of
Paolo Giannozzi (Scuola Normale Superiore, Pisa), with the strong support
of the CINECA National Supercomputing Center in Bologna under the re-
sponsibility of Carlo Cavazzoni. Currently active developers include Gerardo
Ballabio (CINECA), Stefano Fabris, Adriano Mosca Conte, Carlo Sbraccia
(SISSA, Trieste), Anton Kokalj (Jozef Stefan Institute, Ljubljana).

The PWscf package was originally developed by Stefano Baroni, Stefano
de Gironcoli, Andrea Dal Corso (SISSA), Paolo Giannozzi, and others.

The CP code is the result of the merging of two codes: CP and FPMD,
both based on the original code written by Roberto Car and Michele Par-
rinello. CP was developed by Alfredo Pasquarello (IRRMA, Lausanne), Kari
Laasonen (Oulu), Andrea Trave (LLNL), Roberto Car (Princeton), Nicola
Marzari (MIT), Paolo Giannozzi, and others. FPMD was developed by Carlo
Cavazzoni, Gerardo Ballabio (CINECA), Sandro Scandolo (ICTP, Trieste),
Guido Chiarotti (SISSA), Paolo Focher, and others.

PWgui was written by Anton Kokalj and is based on his GUIB concept
(http://www-k3.ijs.si/kokalj/guib/).

The pseudopotential generation package “atomic” was written by Andrea
Dal Corso and it is the result of many additions to the original code by Paolo
Giannozzi.

The input/output toolkit “iotk” was written by Giovanni Bussi (S3, Mo-
dena).

An alphabetical list of further contributors includes: Dario Alfe, France-
sco Antoniella, Mauro Boero, Nicola Bonini, Claudia Bungaro, Paolo Caz-
zato, Davide Ceresoli, Gabriele Cipriani, Matteo Cococcioni, Cesar Da Silva,


http://www-k3.ijs.si/kokalj/guib/

Alberto Debernardi, Gernot Deinzer, Oswaldo Dieguez, Andrea Ferretti,
Guido Fratesi, Ralph Gebauer, Martin Hilgeman, Eyvaz Isaev, Yosuke Kanai,
Axel Kohlmeyer, Konstantin Kudin, Michele Lazzeri, Kurt Maeder, France-
sco Mauri, Nicolas Mounet, Pasquale Pavone, Mickael Profeta, Guido Roma,
Manu Sharma, Alexander Smogunov, Kurt Stokbro, Pascal Thibaudeau,
Antonio Tilocca, Paolo Umari, Renata Wentzcovitch, Yudong Wu, Xiaofei
Wang, and let us apologize to everybody we have forgotten.

This guide was mostly written by Paolo Giannozzi, Gerardo Ballabio,
Carlo Cavazzoni.

1.3 Contacts
The web site for Quantum-ESPRESSO is:

http://www.quantum-espresso.org/

Releases and patches of Quantum-ESPRESSO can be downloaded from this
site or following the links contained in it.

Announcements about new versions of Quantum-ESPRESSO are avail-
able via a low-traffic mailing list Pw_users: (pw_users@pwscf.org). You can
subscribe (but not post) to this list from the PWscf web site.

The recommended place where to ask questions about installation and
usage of Quantum-ESPRESSO, and to report bugs, is the Pw_forum mailing
list (pw_forum@pwscf.org). Here you can obtain help from the developers
and many knowledgeable users. You can subscribe to this list and browse and
search its archive from the PWscf web site. Only subscribed users can post
Please search the archives before posting: your question may have already
been answered.

If you specifically need to contact the developers of Quantum-ESPRESSO
(and only them), write to pwscf@pwsct.org.

Other pointers:

DEMOCRITOS: http://www.democritos.it/
INFM: http://www.infm.it/

CINECA: http://www.cineca.it/

SISSA: http://wuw.sissa.it/

1.4 Terms of use

Quantum-ESPRESSO is free software, released under the GNU General Pub-
lic License (http://www.pwscf.org/License.txt, or the file License in the
distribution).

All trademarks mentioned in this guide belong to their respective owners.


http://www.quantum-espresso.org/
mailto:pw_users@pwscf.org
mailto:pw_forum@pwscf.org
mailto:pwscf@pwscf.org
http://www.democritos.it/
http://www.infm.it/
http://www.cineca.it/
http://www.sissa.it/
http://www.pwscf.org/License.txt

We shall greatly appreciate if scientific work done using this code will con-
tain an explicit acknowledgment and a reference to the Quantum-ESPRESSO
web page. Our preferred form for the acknowledgment is the following:

Acknowledgments:
Calculations in this work have been done using the Quantum-
ESPRESSO package [ref].

Bibliography:

[ref] S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi,
C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher,
A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari,
A. Kokalj, http://www.pwscf.org/.



2 Installation

Presently, the Quantum-ESPRESSO package is only distributed in source
form; some precompiled executables (binary files) are provided only for
PWgui. Providing binaries would require too much effort and would work
only for a small number of machines anyway.

Stable releases of the Quantum-ESPRESSO source package (current ver-
sion is 3.0) can be downloaded from this URL:

http://www.pwscf.org/download.htm

Uncompress and unpack the distribution using the command:
tar zxvf espresso-3.0.tar.gz

If your version of tar doesn’t recognize the z flag, use this instead:
gunzip -c espresso-3.0.tar.gz | tar xvf -

cd to the directory espresso/ that will be created. The bravest may access
the (unstable) development version via anonymous CVS (Concurrent Version
System): see the file README. cvs contained in the distribution.

To install Quantum-ESPRESSO from source, you need C and Fortran-95
compilers (Fortran-90 is not sufficient, but most ”Fortran-90” compilers are
actually Fortran-95-compliant). If you don’t have a commercial Fortran-95
compiler, you may install the free g95 compiler (http://www.g95.0rg/): it
is still unfinished but already usable. You also need a minimal Unix envi-
ronment: basically, a command shell (e.g., bash or tcsh) and the make and
awk utilities. MS-Windows users need to have Cygwin (a UNIX environment
which runs under Windows) installed. See http://www.cygwin.com/.

Instructions for the impatient:

./configure
make all

Executable programs (actually, symlinks to them) will be placed in the bin/
directory.

If you have problems or would like to tweak the default settings, read the
detailed instructions below.

2.1 Configure

To configure the Quantum-ESPRESSO source package, run the configure
script. It will (try to) detect compilers and libraries available on your ma-
chine, and set up things accordingly. Presently it is expected to work on


http://www.pwscf.org/download.htm
http://www.g95.org/
http://www.cygwin.com/

most Linux 32- and 64-bit (Itanium and Opteron) PCs and clusters, IBM
SP machines, SGI Origin, some HP-Compaq Alpha machines, Cray X1, Mac
OS X, MS-Windows PCs. It may work with some assistance also on other
architectures (see below).

For cross-compilation, you have to specify the target machine with the
--host option (see below). This feature has not been extensively tested, but
we had at least one successful report (compilation for NEC SX6 on a PC).

Specifically, configure generates the following files:

make.sys: compilation rules and flags
*x/make .depend: dependencies, per source directory
configure.msg: a report of the configuration run

configure.msg is only used by configure to print its final report. It
isn’t needed for compilation. make.depend files are actually generated by
invoking the makedeps.sh shell script. If you modify the program sources,
you might have to rerun it.

You should always be able to compile the Quantum-ESPRESSO suite
of programs without having to edit any of the generated files. However you
may have to tune configure by specifying appropriate environment variables
and /or command-line options. Usually the most tricky part is to get external
libraries recognized and used: see section [2.1.1] “Libraries”, for details and
hints.

Environment variables may be set in any of these ways:

export VARIABLE=value # sh, bash, ksh
./configure

setenv VARIABLE value # csh, tcsh
./configure

./configure VARIABLE=value # any shell
Some environment variables that are relevant to configure are:

ARCH: label identifying the machine type (see below)

F90, F77, CC: names of Fortran 95, Fortran 77, and C compilers
MPIF90, MPIF77, MPICC: names of parallel compilers

CPP: source file preprocessor (defaults to $CC -E)

LD: linker (defaults to $MPIF90)

CFLAGS, FFLAGS, FOOFLAGS, CPPFLAGS, LDFLAGS: compilation flags
LIBDIRS: extra directories to search for libraries (see below)



For example, the following command line:

./configure MPIF90=mpf90 FFLAGS="-02 -assume byterecl" \
CC=gcc CFLAGS=-03 LDFLAGS=-static

instructs configure to use mpf90 as Fortran 95 compiler with flags -02
-assume byterecl, gcc as C compiler with flags -03, and to link with flags
-static. Note that the value of FFLAGS must be quoted, because it contains
spaces.

If your machine type is unknown to configure, you may use the ARCH
variable to suggest an architecture among supported ones. Try the one that
looks more similar to your machine type; you’ll probably have to do some
additional tweaking. Currently supported architectures are:

linux64: Linux 64-bit machines (Itanium, Opteron)
1linux32: Linux PCs

aix: IBM AIX machines

mips: SGI MIPS machines

alpha: HP-Compaq alpha machines

sparc: Sun SPARC machines

crayxl: Cray X1 machines

mac: Apple PowerPC machines running Mac OS X
cygwin: MS-Windows PCs with Cygwin

Finally, configure recognizes the following command-line options:

--disable-parallel: compile serial code, even if parallel envi-
ronment is available.

--disable-shared: don’t use shared libraries: generate static
executables.

--enable-shared: use shared libraries.

—--host=target: specify target machine for cross-compilation.
Target must be a string identifying the architecture that you want
to compile for; you can obtain it by running config.guess on
the target machine.

If you want to modify the configure script (advanced users only!), read
the instructions in README.configure first. You'll need GNU Autoconf
(http://www.gnu.org/software/autocont/).

2.1.1 Libraries

Quantum-ESPRESSO makes use of the following external libraries:

10


http://www.gnu.org/software/autoconf/

e BLAS (http://www.netlib.org/blas/) and LAPACK
(http://www.netlib.org/lapack/) for linear algebra

o FFTW (http://www.fftw.org/) for Fast Fourier Transforms

A copy of the needed routines is provided with the distribution. However,
when available, optimized vendor-specific libraries can be used instead: this
often yields huge performance gains.

Quantum-ESPRESSO can use the following architecture-specific replace-
ments for BLAS and LAPACK:

essl for IBM machines
complib.sgimath for SGI Origin
SCSL for SGI Altix

scilib for Cray/T3e

sunperf for Sun

MKL for Intel Linux PCs

ACML for AMD Linux PCs

cxml for HP-Compaq Alphas.

If none of these is available, we suggest that you use the optimized ATLAS
library (http://math-atlas.sourceforge.net/). Note that ATLAS is not
a complete replacement for LAPACK: it contains all of the BLAS, plus the
LU code, plus the full storage Cholesky code. Follow the instructions in the
ATLAS distributions to produce a full LAPACK replacement.

Axel Kohlmeyer maintains a set of ATLAS libraries, containing all of
LAPACK and no external reference to fortran libraries:
http://www.theochem.rub.de/ axel.kohlmeyer/cpmd-linux.html#atlas

Sergei Lisenkov reported success and good performances with optimized
BLAS by Kazushige Goto. They can be downloaded freely (but not redis-
tributed!) from: http://www.cs.utexas.edu/users/flame/goto/

The FFTW library can also be replaced by vendor-specific FF'T libraries,
when available, or you can link to a precompiled FFTW library. Please note
that you must use FFTW version 2. Support for version 3 is in progress:
contact the developers if you want to try.

Finally, Quantum-ESPRESSO can use the MASS vector math library
from IBM, if available (only on AIX).

The configure script attempts to find optimized libraries, but may fail
if they have been installed in non-standard places. You should examine
the final value of BLAS_LIBS, LAPACK_LIBS, FFT_LIBS, MPI_LIBS (if needed),
MASS_LIBS (IBM only), either in the output of configure or in the generated
make.sys, to check whether it found all the libraries that you intend to use.

11


http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.fftw.org/
http://math-atlas.sourceforge.net/
http://www.theochem.rub.de/~axel.kohlmeyer/cpmd-linux.html#atlas
http://www.cs.utexas.edu/users/flame/goto/

If any libraries weren’t found, you can specify a list of directories to search
in the environment variable LIBDIRS, and rerun configure; directories in the
list must be separated by spaces. For example:

./configure LIBDIRS="/opt/intel/mk170/1ib/32 /usr/lib/math"

If this still fails, you may set some or all of the *_LIBS variables manually
and retry. For example:

./configure BLAS_LIBS="-L/usr/lib/math -1f77blas -latlas_sse"

Beware that in this case, configure will blindly accept the specified value,
and won’t do any extra search. This is so that if configure finds any library
that you don’t want to use, you can override it.

If you want to use a precompiled FFTW library, the corresponding fftw.h
include file is also required. That may or may not have been installed on
your system together with the library: in particular, most Linux distributions
split libraries into “base” and “development” packages, include files normally
belonging to the latter. Thus if you can’t find fftw.h on your machine,
chances are you must install the FFTW development package (how exactly
it’s called depends on your distribution).

If instead the file is there, but configure doesn’t find it, you may specify
its location in the INCLUDEFFTW environment variable. For example:

./configure INCLUDEFFTW="/usr/lib/fftw-2.1.3/fftw"

If everything else fails, you’ll have to write the make.sys file manually: see
section [2.1.2] “Manual configuration”.

Please Note: If you change any settings after a previous (successful or
failed) compilation, you must run make clean before recompiling, unless you
know exactly which routines are affected by the changed settings and how to
force their recompilation.

2.1.2 Manual configuration

To configure Quantum-ESPRESSO manually, you have to write a working
make.sys yourself, and run makedeps.sh to generate */make.depend files.

For make.sys, several templates (each for a different machine type) to
start with are provided in the install/ directory: they have names of the
form Make. system, where system is a string identifying the architecture and
compiler. Currently available systems are:

12



alpha: HP-Compaq alpha workstations
alphaMPI: HP-Compaq alpha parallel machines
altix: SGI Altix 350/3000 with Linux, Intel compiler
beo_ifc: Linux clusters of PCs, Intel compiler
beowulf: Linux clusters of PCs, Portland compiler
cygwin: Windows PC, Intel compiler

fujitsu: Fujitsu vector machines

hitachi: Hitachi SR8000

hp: HP PA-RISC workstations

hpMPI: HP PA-RISC parallel machines

ia64: HP Itanium workstations

ibm: IBM RS6000 workstations

ibmsp: IBM SP machines

irix: SGI workstations

origin: SGI Origin 2000/3000

pc_abs: Linux PCs, Absoft compiler

pc_ifc: Linux PCs, Intel compiler

pc-lahey: Linux PCs, Lahey compiler

pc_pgi: Linux PCs, Portland compiler

sun: Sun workstations

sunMPI: Sun parallel machines

sxcross: NEC SX-6 (cross-compilation)

t3e: Cray T3E

To select the appropriate templates, you can run:

./configure.old system

where system is the best match to your configuration; configure.old with

no arguments prints the up-to-date list of available systems.
That will copy Make. system to make.sys; for convenience, it’ll also run
makedeps.sh to generate */make.depend files.
Most probably (and even more so if there isn’t an exact match to your

machine type), you'll have to tweak make.sys by hand. In particular, you
must specify the full list of libraries that you intend to link to. You'll also

have to set the MYLIB variable to:

blas_and lapack to compile BLAS and LAPACK from source;

lapack mkl to use the Intel MKL library;
lapack_t3e to use the LAPACK for Cray T3E;
otherwise, leave it empty.

13



Note for HP PA-RISC users: The Makefile for HP PA-RISC worksta-
tions and parallel machines is based on a Makefile contributed by Sergei Ly-
senkov. It assumes that you have HP compiler with MLIB libraries installed
on a machine running HP-UX.

Note for MS-Windows users: The Makefile for Windows PCs is based
on a Makefile written for an earlier version of PWscf (1.2.0), contributed
by Lu Fu-Fa, CCIT, Taiwan. You will need the Cygwin package. The pro-
vided Makefile assumes that you have the Intel compiler with MKL libraries
installed. It is untested.

If you run into trouble, a possibility is to install Linux in dual-boot mode.
You need to create a partition for Linux, install it, install a boot loader
(LILO, GRUB). The latter step is not needed if you boot from floppy or CD-
ROM. In principle one could avoid installation altogether using a distribution
like Knoppix that runs directly from CD-ROM, but for serious use disk access
is needed.

2.2 Compile

There are a few adjustable parameters in Modules/parameters.f90. The
present values will work for most cases. All other variables are dynamically
allocated: you do not need to recompile your code for a different system.
At your option, you may compile the complete Quantum-ESPRESSO
suite of programs (with make all), or only some specific programs.
make with no arguments yields a list of valid compilation targets. Here is
a list:

e make pw produces PW/pw.x and PW/memory.x.

pw.x calculates electronic structure, structural optimization, molecular
dynamics, barriers with NEB. memory.x is an auxiliary program that
checks the input of pw.x for correctness and yields a rough (under-)
estimate of the required memory.

e make ph produces PH/ph.x.
ph.x calculates phonon frequencies and displacement patterns, dielec-
tric tensors, effective charges (uses data produced by pw.x).

e make d3 produces D3/d3.x

d3.x calculates anharmonic phonon lifetimes (third-order derivatives
of the energy), using data produced by pw.x and ph.x (Ultrasoft pseu-
dopotentials not supported).

14



make gamma produces Gamma/phcg.x.

phcg.x is a version of ph.x that calculates phonons at q = 0 using
conjugate-gradient minimization of the density functional expanded to
second-order. Only the I" (@ = 0) point is used for Brillouin zone
integration. It is faster and takes less memory than ph.x, but does not
support Ultrasoft pseudopotentials.

make pp produces several codes for data postprocessing, in PP/ (see list
below).

make tools produces several utility programs, mostly for phonon cal-
culations, in pwtools/ (see list below).

make pwcond produces PWCOND/pwcond. x, for ballistic conductance cal-
culations (experimental).

make pwall produces all of the above.

make 1d1 produces code atomic/1d1l.x for pseudopotential genera-
tiond (see the specific documentation in atomic_doc/).

make upf produces utilities for pseudopotential conversion in directory
upftools/ (see section[d] “Pseudopotentials”).

make cp produces the Car-Parrinello code CP in CPV/cp.x. and the
postprocessing code CPV/cppp . x.

make all produces all of the above.

For the setup of the GUI, refer to the PWgui-X.Y.Z/INSTALL file, where
X.Y.Z stands for the version number of the GUI (should be the same as the

general version number, currently 3.0). If you are using the CVS-sources, see
the GUI/README file instead.

The codes for data postprocessing in PP/ are:

pp-x extracts the specified data from files produced by pw.x, prepare
data fro plotting by writing them into formats that can be read by
several plotting programs

bands.x extracts and reorders eigenvalues from files produced by pw.x
for band structure plotting

projwfc.x calculates projections of wavefunction over atomic orbitals,
performs Lowdin population analysis and calculates projected density
of states. These can be summed using auxiliary code sumpdos.x

15



dipole.x calculates the dipole moment for isolated systems (molecules)
and the Makov-Payne correction for molecules in supercells (beware:
meaningful results only if the charge density is completely contained
into the Wigner-Seitz cell)

plotrho.x produces PostScript 2-d contour plots

plotband.x reads the output of bands.x, produces band structure
PostScript plots

average.x calculates planar averages of potentials

voronoy . x divides the charge density into Voronoy polyhedra (obsolete,
use at your own risk)

dos.x calculates electronic Density of States (DOS)

pw2wan.x: interface with code Wan'T for calculation of transport prop-
erties via Wannier (also known as Boyd) functions: see
http://www.wannier-transport.org/

pmw . x generates Poor Man’s Wannier functions, to be used in LDA+U
calculations

pw2casino.x: interface with CASINO code for Quantum Monte Carlo
calculation (http://www.tcm.phy.cam.ac.uk/ " mdt26/casino.html).

The utility programs in pwtools/ are:

dynmat .x applies various kinds of Acoustic Sum Rule (ASR), calculates
LO-TO splitting at q = 0 in insulators, IR and Raman cross sections
(if the coefficients have been properly calculated), from the dynamical
matrix produced by ph.x

q2r.x calculates Interatomic Force Constants (IFC) in real space from
dynamical matrices produced by ph.x on a regular q-grid

matdyn.x produces phonon frequencies at a generic wave vector using
the IFC file calculated by g2r.x; may also calculate phonon DOS

fgha.x for quasi-harmonic calculations

lambda.x calculates the electron-phonon coefficient A and the function
@’ F(w)

16


http://www.wannier-transport.org/
http://www.tcm.phy.cam.ac.uk/~mdt26/casino.html

dist.x calculates distances and angles between atoms in a cell, taking
into account periodicity

ev.x fits energy-vs-volume data to an equation of state
kpoints.x produces lists of k-points

pwi2xsf.sh, pwo2xsf.sh process respectively input and output files
(not data files!) for pw.x and produce an XSF-formatted file suitable
for plotting with XCrySDen, a powerful crystalline and molecular struc-
ture visualization program (http://www.xcrysden.org/). BEWARE:
the pwi2xsf.sh shell script requires the pwi2xsf.x executables to be
located somewhere in your $PATH.

band_plot.x: undocumented and possibly obsolete

bs.awk, mv.awk are scripts that process the output of pw.x (not data
files!). Usage:

awk —-f bs.awk < my-pw-file > myfile.bs
awk -f mv.awk < my-pw-file > myfile.mv

The files so produced are suitable for use with xbs, a very simple X-
windows utility to display molecules, available at:
http://www.ccl.net/cca/software/X-WINDOW/xbsa/README. shtml

path_int.sh/path_int.x: utility to generate, starting from a path (a
set of images), a new one with a different number of images. The initial
and final points of the new path can differ from those in the original
one. Useful for NEB calculations.

kvecs_FS.x, bands FS.x: utilities for Fermi Surface plotting usingX
CrySDen

2.3 Run examples

As a final check that compilation was successful, you may want to run some or
all of the examples contained within the examples directory of the Quantum-
ESPRESSO distribution. Those examples try to exercise all the programs
and features of the Quantum-ESPRESSO package. A list of examples and
of what each example does is contained in examples/README. For details,
see the README file in each example’s directory. If you find that any relevant

17


http://www.ccl.net/cca/software/X-WINDOW/xbsa/README.shtml

feature isn’t being tested, please contact us (or even better, write and send
us a new example yourself!).

If you haven’t downloaded the full Quantum-ESPRESSO distribution and
don’t have the examples, you can get them from the Test and Examples Page
of the Quantum-ESPRESSO web site (http://www.pwsct.org/tests.htm).
The necessary pseudopotentials are included.

To run the examples, you should follow this procedure:

1. Go to the examples directory and edit the environment_variables
file, setting the following variables as needed:

BIN_DIR= directory where Quantum-ESPRESSO executables
reside

PSEUDO_DIR= directory where pseudopotential files reside
TMP_DIR= directory to be used as temporary storage area

If you have downloaded the full Quantum-ESPRESSO distribution,
you may set BIN_DIR=$TOPDIR/bin and PSEUDO _DIR=$TOPDIR/pseudo,
where $TOPDIR is the root of the Quantum-ESPRESSO source tree.

In order to be able to run all the examples, the PSEUDO_DIR directory
must contain the following files:

Al .vbc.UPF, As.gon.UPF, C.pz-rrkjus.UPF,
Cu.pz-d-rrkjus.UPF, Fe.pz-nd-rrkjus.UPF, H. fpmd.UPF,
H.vbc.UPF, N.BLYP.UPF, Ni.pbe-nd-rrkjus.UPF,
NiUS.RRKJ3.UPF, 0.BLYP.UPF, 0.LDA.US.RRKJ3.UPF,
0.pbe-rrkjus.UPF, 0.vdb.UPF, OPBE_nc.UPF, Pb.vdb.UPF,
Ptrel .RRKJ3.UPF, Si.vbc.UPF, SiPBE nc.UPF, Ti.vdb.UPF

If any of these are missing, you can download them (and many others)
from the Pseudopotentials Page of the Quantum-ESPRESSO web site
(http://www.pwsct.org/pseudo.htm).

TMP_DIR must be a directory you have read and write access to, with
enough available space to host the temporary files produced by the
example runs, and possibly offering high I/O performance (i.e., don’t
use an NFS-mounted directory).

2. If you have compiled the parallel version of Quantum-ESPRESSO (this
is the default if parallel libraries are detected), you will usually have to
specify a driver program (such as poe or mpiexec) and the number of
processors: read section |3 “Running on parallel machines” for details.

18


http://www.pwscf.org/tests.htm
http://www.pwscf.org/pseudo.htm

In order to do that, edit again the environment variables file and
set the PARA_PREFIX and PARA POSTFIX variables as needed. Parallel
executables will be run by a command like this:

$PARA_PREFIX pw.x $PARA_POSTFIX < file.in > file.out
For example, if the command line is like this (as for an IBM SP4):
poe pw.x -procs 4 < file.in > file.out

you should set PARA_PREFIX="poe", PARA POSTFIX="-procs 4".

Furthermore, if your machine does not support interactive use, you
must run the commands specified below through the batch queueing
system installed on that machine. Ask your system administrator for
instructions.

. To run a single example, go to the corresponding directory (for instance,
example/example01) and execute:

./run_example

This will create a subdirectory results, containing the input and out-
put files generated by the calculation.

Some examples take only a few seconds to run, while others may require
several minutes depending on your system.

To run all the examples in one go, execute:
./run_all_examples

from the examples directory. On a single-processor machine, this typ-
ically takes one to three hours.

The make_clean script cleans the examples tree, by removing all the
results subdirectories. However, if additional subdirectories have
been created, they aren’t deleted.

. In each example’s directory, the reference subdirectory contains ver-
ified output files, that you can check your results against. They were
generated on a Linux PC using the Intel compiler. On different archi-
tectures the precise numbers could be slightly different, in particular if
different FFT dimensions are automatically selected. For this reason,

19



a plain diff of your results against the reference data doesn’t work, or
at least, it requires human inspection of the results.

Instead, you can run the check example script in the examples direc-
tory:

./check_example example_dir

where example_dir is the directory of the example that you want to
check (e.g., ./check example exampleO1). You can specify multiple
directories.

Note: at the moment check example is in early development and
(should be) guaranteed to work only on examples 01 to 04.

2.4 Installation issues

The main development platforms are IBM SP and Intel/AMD PC with Linux
and Intel compiler. For other machines, we rely on user’s feedback.

All machines Working fortran-95 and C compilers are needed in order
to compile Quantum-ESPRESSO. Most so-called “fortran-90” compilers im-
plement the fortran-95 standard, but older versions may not be fortran-95
compliant.

If you get “Compiler Internal Error” or similar messages, try to lower
the optimization level, or to remove optimization, just for the routine that
has problems. If it doesn’t work, or if you experience weird problems, try to
install patches for your version of the compiler (most vendors release at least
a few patches for free), or to upgrade to a more recent version.

If you get an error in the loading phase that looks like “Id: file XYZ.o:
unknown (unrecognized, invalid, wrong, missing, ...) file type”, or “While
processing relocatable file XYZ.o0, no relocatable objects were found” (T3E),
one of the following things have happened:

1. you have leftover object files from a compilation with another compiler:
run make clean and recompile.

2. make does not stop at the first compilation error (it happens with some
compilers). Remove file XYZ.0 and look for the compilation error.

If many symbols are missing in the loading phase, you did not specify the
location of all needed libraries (LAPACK, BLAS, FFTW, machine-specific
optimized libraries). If you did, but symbols are still missing, see below (for
Linux PC).

20



SGI machines with MIPS compiler Many versions of the MIPS com-
piler yield compilation errors in conjunction with with FORALL constructs.
There is no known solution other than editing the FORALL construct that
gives a problem, or to replace it with an equivalent DO...END DO construct.

Linux Alphas with Compaq compiler If at linking stage you get er-
ror messages like: “undefined reference to ‘for_check mult_overflow64’ 7 with
Compaq/HP fortran compiler on Linux Alphas, check the following page:
http://linux.iol.unh.edu/linux/fortran/faq/cfal-X1.0.2.html.

Linux PC The web site of Axel Kohlmeyer contains a very informative
section on compiling and running CPMD on Linux. Most of its contents
applies to the Quantum-ESPRESSO code as well:
http://www.theochem.rub.de/~axel.kohlmeyer/cpmd-linux.html.

On newer Linux machines, even statically linked binaries will try to open
some shared libraries, which will lead to crashes if libc/libm/libpthreads
are not linked dynamically. Machines using glibc-2.2.4 and older seem ok:
compile on these machines if you want to share precompiled binaries. Crashes
due to multithreading (e.g. when using a multithreaded ATLAS or MKL)
on machines with the newer threads (nptl) can be worked around by setting
the environment variable LD_ASSUME_KERNEL to '2.2.5". For the newest Intel
compilers, -static-1libcxa does the trick most of the time. (info from Axel
Kohlmeyer)

Since there is no standard compiler for Linux, different compilers have
different ideas about the right way to call external libraries. As a consequence
you may have a mismatch between what your compiler calls (”symbols”)
and the actual name of the required library call. Use the nm command to
determine the name of a library call, as in the following examples:

nm /usr/local/lib/libblas.a | grep T | grep -i daxpy
nm /usr/local/lib/liblapack.a | grep T | grep -i zhegv

where typical location and name of libraries is assumed. Most precompiled
libraries have lowercase names with one or two underscores (-) appended.
configure should select the appropriate preprocessing options in make.sys,
but in case of trouble, be aware that:

e the Absoft compiler is case-sensitive (like C and unlike other Fortran
compilers) and does not add an underscore to symbol names (note that
if your libraries contain uppercase or mixed case names, you are out
of luck: You must either recompile your own libraries, or change the
#define’s in include/f _defs.h);

21


http://linux.iol.unh.edu/linux/fortran/faq/cfal-X1.0.2.html
http://www.theochem.rub.de/~axel.kohlmeyer/cpmd-linux.html

e both Portland compiler (pgf90) and Intel compiler (ifort/ifc) are case
insensitive and add an underscore to symbol names.

With some precompiled lapack libraries, you may need to add -1g2c or
-1m or both.

Linux PCs with Portland Group compiler (pgf90)
Quantum-ESPRESSO does not work reliably, or not at all, with some ver-
sions (in particular, 5.2) of the Portland Group compiler. We think that this
is due to compiler bugs, not to Quantum-ESPRESSO bugs. In any event, use
the latest version of each release of the compiler, with patches if available:
see the Portland Group web site,
http://www.pgroup.com/faq/install.htm#release info

Linux PCs (Pentium) with Intel compiler (ifort, formerly ifc)

If configure doesn’t find the compiler, or if you get “Error loading shared
libraries...” at run time, you have forgotten to execute the script that sets up
the correct path and library path. Unless your system manager has done this
for you, you should execute the appropriate script — located in the directory
containing the compiler executable — in your initialization files. Consult the
documentation provided by Intel.

Each major release of the Intel compiler differs a lot from the previous one.
Do not mix compiled objects from different releases: they are incompatible.
Intel compiler v. 7 and later use a different method to locate where modules
are with respect to v. < 7: if you are using the manual configuration, choose
the appropriate line MODULEFLAG=. .. in make.sys.

Some releases of Intel compiler v. 7 and 8 yield “Compiler Internal Error”.
Update to the last version (presently 7.1.41, 8.0.046 or 8.1.018, respectively),
available via Intel Premier support (registration free of charge for Linux):
http://developer.intel.com/software/products/support/#premier.
There are conflicting reports on the newest version 9. In any event, look for
the last version with the most patches.

Warnings “size of symbol ... changed ...” are produced by ifc 7.1 at
the loading stage. These seem to be harmless, but they may cause the
loader to stop, depending on your system configuration. If this happens
and no executable is produced, add the following to LDFLAGS: -Xlinker
--noinhibit-exec.

On Intel CPUs, it is very convenient to use Intel MKL libraries. If
configure doesn’t find them, try configure --enable-shared. MKL also
contains optimized FFT routines, but they are presently not supported: use
FFTW instead. Note that Intel compiler v. 8 fails to load with MKL v. 5.2

22


http://www.pgroup.com/faq/install.htm#release_info
http://developer.intel.com/software/products/support/#premier

or earlier versions, because some symbols that are referenced by MKL are
missing. There is a fix for this (info from Konstantin Kudin): add libF90.a
from ifc 7.1 at the linking stage, as the last library. Note that some combina-
tions of not-so-recent versions of MKL and ifc may yield a lot of "undefined
references” when statically loaded: use configure --enable-shared, or re-
move the —static option in make.sys. Note that pwcond.x works only with
recent versions (v.7 or later) of MKL.

When using/testing/benchmarking MKL on SMP (multiprocessor) ma-
chines, one should set the environmental variable OMP_NUM_THREADS to 1,
unless the OpenMP parallelization is desired. MKL by default sets the vari-
able to the number of CPUs installed and thus gives the impression of a
much better performance, as the CPUu time is only measured for the master
thread (info from Axel Kohlmeyer).

The I/O libraries used by older versions of the Intel compiler are in-
compatible with those called by most precompiled BLAS/LAPACK libraries
(including ATLAS): you get error messages at linking stage. A workaround
is to recompile BLAS/LAPACK with ifc, or (better) to replace the BLAS
routine xerbla and LAPACK routine dlamch (the only two containing 1/0O
calls) with recompiled objects:

ifc -c xerbla.f
ifc -00 -c dlamch.f

(do not forget -00 — dlamch.f must be compiled without optimization) and
replace them into the library, as in the following example:

ar rv libatlas.a xerbla.o dlamch.o

(assuming that the library and the two object files are in the same directory).
See also Axel Kohlmeyer’s web site.

Linux distributions using glibc 2.3 or later (such as e.g. RedHat 9) may be
incompatible with ifc 7.0 and 7.1. The incompatibility shows up in the form
of messages “undefined reference to ‘errno’ ” at linking stage. A workaround
is available: see http://newweb.ices.utexas.edu/misc/ctype.c.

There is a well known problem with version 8 of Intel compiler and
pthreads (that are used both in Debian Woody and Sarge) that causes ”seg-
mentation fault” errors (info from Lucas Fernandez Seivane). Version 7 does
not have this problem.

AMD CPUs, Intel Itanium AMD Athlon CPUs can be basically treated
like Intel Pentium CPUs. You can use the Intel compiler and MKL with
Pentium-3 optimization.

23


http://newweb.ices.utexas.edu/misc/ctype.c

Konstantin Kudin reports that the best results in terms of performances
are obtained with ATLAS optimized BLAS/LAPACK libraries, using AMD
Core Math Library (ACML) for the missing libraries. ACML can be freely
downloaded from AMD web site. Beware: some versions of ACML — i.e.
the GCC version with SSE2 — crash PWscf. The “_nosse2” version appears
to be stable. Load first ATLAS, then ACML, then -1g2c, as in the follow-
ing example (replace what follows -L with something appropriate to your
configuration):

-L/location/of/fftw/1ib/ -1fftw \
-L/location/of/atlas/1lib -1f77blas -1llapack -lcblas -latlas \
-L/location/of/gnu32_nosse2/lib -lacml -1lg2c

64-bit CPUs like the AMD Opteron and the Intel Itanium are supported and
should work both in 32-bit emulation and in 64-bit mode (in the latter case,
-D__LINUX64 is needed among the preprocessing flags). Both the PGI and
the Intel compiler (v8.1 EM64T-edition, available via Intel Premier support)
should work. 64-bit executables can address a much larger memory space,
but apparently they are not especially faster than 32-bit executables. The
Intel compiler has been reported to be more reliable and to produce faster
executables wrt the PGI compiler. You may also try with g95.

Linux PC clusters with MPI PC clusters running some version of MPI
are a very popular computational platform nowadays. Two major MPI im-
plementations (MPICH, LAM-MPI) are available. The number of possible
configurations, in terms of type and version of the MPI libraries, kernels, sys-
tem libraries, compilers, is very large. Quantum-ESPRESSO compiles and
works on all non-buggy, properly configured configuration. You may have to
recompile MPI libraries in order to be able to use them with the Intel com-
piler. See Axel Kohlmeyer’s web site for precompiled versions of the MPI
libraries.

If Quantum-ESPRESSO does not work for some reason on a PC cluster,
try first if it works in serial execution. A frequent problem with parallel
execution is that Quantum-ESPRESSO does not read from standard input,
due to a bad configuration of MPI libraries: see section “Running on parallel
machines”. If you get weird errors with LAM-MPI, add -D__LAM to prepro-
cessing options and recompile. See also Axel Kohlmeyer’s web site for more
info.

If you are dis satisfied with the performances in parallel execution, read
the “Parallelization issues” section.

24



T3E The following workaround is needed: in files PW/bp_zgefa.f and
PW/bp_zgedi . f, replace all occurrences of zscal, zaxpy, zswap, izamax with
cscal, caxpy, cswap, icamax. Also, in PP/dist.f you need to comment the
call to getarg and uncomment the call to pxfgetarg.

If you have a T3E with “benchlib” installed, you may want to use it
by adding -D__BENCHLIB to preprocessing flags. If you get errors at loading
because symbols LPUTP, LGETV, LSETV are undefined, you either need to link
“benchlib” | or to remove -D__BENCHLIB and recompile (after a make clean).

25



3 Running on parallel machines

Parallel execution is strongly system- and installation-dependent. Typically
one has to specify:

a launcher program, such as poe, mpirun, or mpiexec;

e the number of processors, typically as an option to the launcher pro-
gram, but in some cases after the program to be executed;

e the program to be executed, with the proper path if needed: for in-
stance, pw.x, or ./pw.x, or $HOME/bin/pw.x, or whatever applies;

e the number of “pools” into which processors are to be grouped (see sec-
tion , “Parallelization Issues”, for an explanation of what a pool is).

The last item is optional and is read by the code. The first and sec-
ond items are machine- and installation-dependent, and may be different for
interactive and batch execution.

Please note: Your machine might be configured so as to disallow inter-
active execution: if in doubt, ask your system administrator.

For illustration, here’s how to run pw.x on 16 processors partitioned into
8 pools (2 processors each), for several typical cases. For convenience, we
also give the corresponding values of PARA_PREFIX, PARA POSTFIX to be used
in running the examples distributed with Quantum-ESPRESSO (see section
2.3] “Run examples”).

IBM SP machines, batch:
pw.x —npool 8 < input
PARA_PREFIX="", PARA_POSTFIX="-npool 8"

This should also work interactively, with environment variables NPROC
set to 16, MP_HOSTFILE set to the file containing a list of processors.

IBM SP machines, interactive, using poe:
poe pw.x -procs 16 -npool 8 < input

PARA_PREFIX="poe", PARA_POSTFIX="-procs 16 -npool 8"

26



SGI Origin and PC clusters using mpirun:
mpirun -np 16 pw.x -npool 8 < input
PARA_PREFIX="mpirun -np 16", PARA_POSTFIX="-npool 8"
PC clusters using mpiexec:
mpiexec -n 16 pw.x -npool 8 < input
PARA_PREFIX="mpiexec -n 16", PARA_POSTFIX="-npool 8"
Cray T3E (old):
mpprun -n 16 pw.x -npool 8 < input
PARA_PREFIX="mpprun -n 16", PARA_POSTFIX="-npool 8"

Note that each processor writes its own set of temporary wavefunction
files during the calculation. If wf_collect=.true. (in namelist control),
the final result is collected into a single file, whose format is independent
on the number of processors; otherwise, one wavefunction file per processor
is left on the disk. In the latter case, the files are readable only by a job
running on the same number of processors and pools, and if all files are
on a file system that is visible to all processors (i.e., you cannot use local
scratch directories: there is presently no way to ensure that the distribution
of processes on processors will follow the same pattern for different jobs).

Some implementations of the MPI library may have problems with in-
put redirection in parallel. If this happens, use the option -in (or -inp
or -input), followed by the input file name. Example: pw.x -in input
-npool 4 > output.

Please note that all postprocessing codes not reading data files produced
by pw.x — that is, average.x, voronoy.x, dos.x — the plotting codes
plotrho.x, plotband.x, and all executables in pwtools/, should be exe-
cuted on just one processor. Unpredictable results may follow if those codes
are run on more than one processor.

27



4 Pseudopotentials

Currently PWscf and CP support both Ultrasoft (US) Vanderbilt pseudopo-
tentials (PPs) and Norm-Conserving (NC) Hamann-Schliiter-Chiang PPs in
separable Kleinman-Bylander form. Note however that calculation of third-
order derivatives is not (yet) implemented with US PPs.

The Quantum-ESPRESSO package uses a unified pseudopotential format
(UPF) (http://www.pwscf.org/format.htm) for all types of PPs, but still
accepts a number of other formats:

the “old PWsct” format for NC PPs (PWscf only!),

e the “old CP” format for NC PPs (CP only!),

e the “old FPMD” format for NC PPs (CP only!),

e the “new PWscf” format for NC and US PPs,

e the “Vanderbilt” format (formatted, not binary) for NC and US PPs.

See also http://www.pwscf.org/oldformat.htm.

A large collection of PPs (currently about 60 elements covered) can be
downloaded from the Pseudopotentials Page of the Quantum-ESPRESSO
web site (http://www.pwsct.org/pseudo.htm). The naming convention for
these PPs is explained in file Doc/nomefile.upf.

If you do not find there the PP you need (because there is no PP for the
atom you need or you need a different exchange-correlation functional or a
different core-valence partition or for whatever reason may apply), it may be
taken, if available, from published tables, such as e.g.:

e G.B. Bachelet, D.R. Hamann and M. Schliiter, Phys. Rev. B 26, 4199
(1982)

e X. Gonze, R. Stumpf, and M. Scheffler, Phys. Rev. B 44, 8503 (1991)
e S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996)

or otherwise it must be generated. Since version 2.1, Quantum-ESPRESSO
includes a PP generation package, in the directory atomic/ (sources) and
atomic_doc/ (documentation, tests and examples). The package can gener-
ate both NC and US PPs in UPF format. We refer to its documentation for
instructions on how to generate PPs with the atomic/ code.

Other PP generation packages are available on-line:

28


http://www.pwscf.org/format.htm
http://www.pwscf.org/oldformat.htm
http://www.pwscf.org/pseudo.htm

e David Vanderbilt’s code (UltraSoft PPs):
http://www.physics.rutgers.edu/ dhv/uspp/index.html

e Iritz Haber’s code (Norm-Conserving PPs):
http://www.fhi-berlin.mpg.de/th/fhi98md/fhi98PP

e José-Luis Martins’ code (Norm-Conserving PPs):
http://bohr.inesc-mn.pt/~ jlm/pseudo.html

The first two codes produce PPs in UPF format, or in a format that can
be converted to unified format using the utilities of directory upftools/.

Finally, other electronic-structure packages (CAMPOS, ABINIT) provide
tables of PPs that can be freely downloaded, but need to be converted into
a suitable format for use with Quantum-ESPRESSO.

Remember: always test the PPs on simple test systems before proceeding
to serious calculations.

29


http://www.physics.rutgers.edu/~dhv/uspp/index.html
http://www.fhi-berlin.mpg.de/th/fhi98md/fhi98PP
http://bohr.inesc-mn.pt/~jlm/pseudo.html

5 Using PWscf

Input files for the PWscf codes may be either written by hand (the good old
way), or produced via the “PWgui” graphical interface by Anton Kokalj, in-
cluded in the Quantum-ESPRESSO distribution. See PWgui-z.y.z/INSTALL
(where z.y.z is the version number) for more info on PWgui, or GUI/README
if you are using CVS sources.

You may take the examples distributed with Quantum-ESPRESSO as
templates for writing your own input files: see section [2.3] “Run examples”.
In the following, whenever we mention “Example N”, we refer to those. Input
files are those in the results directories, with names ending in .in (they’ll
appear after you've run the examples).

Note about exchange-correlation: the type of exchange-correlation used
in the calculation is read from PP files. All PP’s must have been generated
using the same exchange-correlation.

5.1 Electronic and ionic structure calculations

Electronic and ionic structure calculations are performed by program pw.x.

5.1.1 Input data

The input data is organized as several namelists, followed by other fields
introduced by keywords.
The namelists are

&CONTROL: general variables controlling the run

&SYSTEM: structural information on the system under investiga-
tion

&ELECTRONS: electronic variables: self-consistency, smearing
&IONS (optional): ionic variables: relaxation, dynamics

&CELL (optional): variable-cell dynamics

&PHONON (optional): information required to produce data for
phonon calculations

Optional namelist may be omitted if the calculation to be performed
does not require them. This depends on the value of variable calculation
in namelist &CONTROL. Most variables in namelists have default values. Only
the following variables in &SYSTEM must always be specified:

ibrav (integer): bravais-lattice index
celldm (real, dimension 6): crystallographic constants

30



nat (integer): number of atoms in the unit cell
ntyp (integer): number of types of atoms in the unit cell
ecutwfc (real): kinetic energy cutoff (Ry) for wavefunctions.

For metallic systems, you have to specify how metallicity is treated by setting
variable occupations. If you choose occupations=’smearing’, you have
to specify the smearing width degauss and optionally the smearing type
smearing. If you choose occupations=’tetrahedra’, you need to spec-
ify a suitable uniform k-point grid (card K_.POINTS with option automatic).
Spin-polarized systems must be treated as metallic system, except the spe-
cial case of a single k-point, for which occupation numbers can be fixed
(occupations=’from input’ and card OCCUPATIONS).

Explanations for the meaning of variables ibrav and celldm are in file
INPUT _PW. Please read them carefully. There is a large number of other
variables, having default values, which may or may not fit your needs.

After the namelists, you have several fields introduced by keywords with
self-explanatory names:

ATOMIC_SPECIES
ATOMIC_POSITIONS
K_POINTS

CELL_PARAMETERS (optional)
OCCUPATIONS (optional)
CLIMBING_IMAGES (optional)

The keywords may be followed on the same line by an option. Unknown
fields (including some that are specific to CP code) are ignored by PWscf.
See file Doc/INPUT_PW for a detailed explanation of the meaning and format
of the various fields.

Note about k points: The k-point grid can be either automatically gener-
ated or manually provided as a list of k-points and a weight in the Irreducible
Brillouin Zone only of the Bravais lattice of the crystal. The code will gener-
ate (unless instructed not to do so: see variable nosym) all required k-points
and weights if the symmetry of the system is lower than the symmetry of the
Bravais lattice. The automatic generation of k-points follows the convention
of Monkhorst and Pack.

5.1.2 Typical cases

We may distinguish the following typical cases for pw.x:

single-point (fixed-ion) SCF calculation. Set calculation=’scf’.

31



Namelists &I0ONS and &CELL need not to be present (this is the default).
See Example 01.

band structure calculation. First perform a SCF calculation as above;
then do a non-SCF calculation specifying calculation=’nscf’, with
the desired k-point grid and number nbnd of bands.

Specify nosym=.true. to avoid generation of additional k-points in
low symmetry cases. Variables prefix and outdir, which determine
the names of input or output files, should be the same in the two runs.
See Example 01.

structural optimization. Specify calculation=’relax’ and add name-
list &IONS.

All options for a single SCF calculation apply, plus a few others. You
may follow a structural optimization with a non-SCF band-structure
calculation, but do not forget to update the input ionic coordinates.
See Example 03.

molecular dynamics. Specify calculation=’"md’ and time step dt.

Use variable ion_dynamics in namelist &I0NS for a fine-grained control
of the kind of dynamics. Other options for setting the initial tempera-
ture and for thermalization using velocity rescaling are available. Re-
member: this is MD on the electronic ground state, not Car-Parrinello
MD. See Example 04.

polarization via Berry Phase. See Example 10, its README, and the doc-
umentation in the header of PW/bp_c_phase.f90.

Nudged Elastic Band calculation. Specify calculation=’neb’ and
add namelist &I0NS.

All options for a single SCF calculation apply, plus a few others. In the
namelist &I0ONS the number of images used to discretize the elastic band
must be specified. All other variables have a default value. Coordinates
of the initial and final image of the elastic band have to be specified
in the ATOMIC_POSITIONS card. A detailed description of all input
variables is contained in the file Doc/INPUT_PW. See also Example 17.

The output data files are written in the directory specified by variable

outdir, with names specified by variable prefix (a string that is prepended
to all file names, whose default value is: prefix="pwscf’).

32



The execution stops if you create a file prefix.EXIT in the working di-
rectory. Note that just killing the process may leave the output files in an
unusable state.

5.2 Phonon calculations

The phonon code ph.x calculates normal modes at a given g-vector, starting
from data files produced by pw.x.

If g = 0, the data files can be produced directly by a simple SCF calcu-
lation. For phonons at a generic g-vector, you need to perform first a SCF
calculation, then a band-structure calculation (see above) with calculation
= ’phonon’, specifying the g-vector in variable xq of namelist &PHONON.

The output data file appear in the directory specified by variables outdir,
with names specified by variable prefix. After the output file(s) has been
produced (do not remove any of the files, unless you know which are used
and which are not), you can run ph.x.

The first input line of ph.x is a job identifier. At the second line the
namelist &INPUTPH starts. The meaning of the variables in the namelist
(most of them having a default value) is described in file INPUT_PH. Variables
outdir and prefix must be the same as in the input data of pw.x. Presently
you must also specify amass (real, dimension ntyp): the atomic mass of each
atomic type.

After the namelist you must specify the g-vector of the phonon mode.
This must be the same g-vector given in the input of pw.x.

Notice that the dynamical matrix calculated by ph.x at q = 0 does not
contain the non-analytic term occuring in polar materials, i.e. there is no
LO-TO splitting in insulators. Moreover no Acoustic Sum Rule (ASR) is
applied. In order to have the complete dynamical matrix at q = 0 including
the non-analytic terms, you need to calculate effective charges by specifying
option epsil=.true. to ph.x.

Use program dynmat .x to calculate the correct LO-TO splitting, IR cross
sections, and to impose various forms of ASR. If ph.x was instructed to cal-
culate Raman coefficients, dynmat .x will also calculate Raman cross sections
for a typical experimental setup.

A sample phonon calculation is performed in Example 02.

5.2.1 Calculation of interatomic force constants in real space

First, dynamical matrices D(q) are calculated and saved for a suitable uni-
form grid of g-vectors (only those in the Irreducible Brillouin Zone of the
crystal are needed). Although this can be done one g-vector at the time,

33



a simpler procedure is to specify variable 1disp=.true and to set variables
nql,nq2,nq3 to some suitable Monkhorst-Pack grid, that will be automati-
cally generated, centered at q = 0. Do not forget to specify epsil=.true.
in the input data of ph.x if you want the correct TO-LO splitting in polar
materials.

Second, code q2r.x reads the D(q) dynamical matrices produced in the
preceding step and Fourier-transform them, writing a file of Interatomic Force
Constants in real space, up to a distance that depends on the size of the grid
of g-vectors. Program matdyn.x may be used to produce phonon modes and
frequencies at any q using the Interatomic Force Constants file as input.

See Example 06.

5.2.2 Calculation of electron-phonon interaction coefficients

The calculation of electron-phonon coefficients in metals is made difficult by
the slow convergence of the sum at the Fermi energy. It is convenient to cal-
culate phonons, for each g-vector of a suitable grid, using a smaller k-point
grid, saving the dynamical matrix and the self-consistent first-order varia-
tion of the potential (variable fildvscf). Then a non-SCF calculation with
a larger k-point grid is performed. Finally the electron-phonon calculation is
performed by specifying elph=.true., trans=.false., and the input files
fildvscft, fildyn. The electron-phonon coefficients are calculated using sev-
eral values of gaussian broadening (see PH/elphon.f90) because this quickly
shows whether results are converged or not with respect to the k-point grid
and Gaussian broadening. See Example 07.

All of the above must be repeated for all desired g-vectors and the final
result is summed over all g-vectors, using pwtools/lambda.x. The input
data for the latter is described in the header of pwtools/lambda.f90.

5.3 Post-processing

There are a number of auxiliary codes performing postprocessing tasks such
as plotting, averaging, and so on, on the various quantities calculated by
pw.x. Such quantities are saved by pw.x into the output data file(s).

The main postprocessing code pp.x reads data file(s), extracts or calcu-
lated the selected quantity, writes it into a format that is suitable for plotting.
Quantities that can be read or calculated are:

charge density

spin polarization
various potentials

34



local density of states at Ep

local density of electronic entropy
STM images

wavefunction squared

electron localization function
planar averages

integrated local density of states

Various types of plotting (along a line, on a plane, three-dimensional, polar)
and output formats (including the popular cube format) can be specified.
The output files can be directly read by the free plotting system Gnuplot
(1D or 2D plots), or by code plotrho.x that comes with PWscf (2D plots),
or by advanced plotting software XCrySDen and gOpenMol (3D plots)

See file INPUT_PP for a detailed description of the input for code pp.x.
See Example 05 for a charge density plot.

The postprocessing code bands. x reads data file(s), extracts eigenvalues,
regroups them into bands (the algorithm used to order bands and to resolve
crossings may not work in all circumstances, though). The output is written
to a file in a simple format that can be directly read by plotting program
plotband.x. Unpredictable plots may results if k-points are not in sequence
along lines. See Example 05 for a simple band plot.

The postprocessing code projwfc.x calculates projections of wavefunc-
tion over atomic orbitals. The atomic wavefunctions are those contained
in the pseudopotential file(s). The Léwdin population analysis (similar to
Mulliken analysis) is presently implemented. The projected DOS (PDOS,
the DOS projected onto atomic orbitals) can also be calculated and written
to file(s). More details on the input data are found in the header of file
PP/projwfc.£90. The auxiliary code sumpdos.x (courtesy of Andrea Fer-
retti) can be used to sum selected PDOS, by specifiying the names of files
containing the desired PDOS. Type sumpdos.x -h or look into the source
code for more details. The total electronic DOS is instead calculated by code
PP/dos.x. See Example 08 for total and projected electronic DOS calcula-
tions.

The postprocessing code path_int.x is intended to be used in the frame-
work of NEB calculations. It is a tool to generate a new path (what is
actually generated is the restart file) starting from an old one through inter-
polation (cubic splines). The new path can be discretized with a different
number of images (this is its main purpose), images are equispaced and the
interpolation can be also performed on a subsection of the old path. The
input file needed by path_int.x can be easily set up with the help of the self
explanatory path_int.sh shell script.

35



6 Using CP

This section is intended to explain how to perform basic Car-Parrinello (CP)
simulations using the CP codes.

It is important to understand that a CP simulation is a sequence of dif-
ferent runs, some of them used to "prepare” the initial state of the system,
and other performed to collect statistics, or to modify the state of the system
itself, i.e. modify the temperature or the pressure.

To prepare and run a CP simulation you should:

1. define the system:

a

b

atomic positions

—~ o~

system cell

C

—

pseudopotentials

—~

cut-offs

—~

)
)
)
d) number of electrons and bands
e)
)

(f

2. The first run, when starting from scratch, is always an electronic min-
imization, with fixed ions and cell, to bring the electronic system on
the ground state (GS) relative to the starting atomic configuration.
Example of input file (Benzene Molecule):

FFT grids (CP code only)

&control
title = ’ Benzene Molecule ’,
calculation = ’cp’,
restart_mode = ’from_scratch’,
ndr = 51,
ndw = b1,
nstep = 100,
iprint = 10,
isave = 100,
tstress = .TRUE.,
tprnfor = .TRUE.,
dt = 5.0d0,
etot_conv_thr = 1.4-9,
ekin_conv_thr = 1.4d-4,

prefix = ’c6h6’
pseudo_dir=’/scratch/acv0/benzene/’,

36



outdir=’/scratch/acv0/benzene/0ut/’
/
&system
ibrav = 14,
celldm(1l) = 16.0,
celldm(2) = 1
celldm(3) = 0
celldm(4) = 0.
celldm(5) = 0
celldm(6) = 0O
nat = 12,
ntyp = 2,
nbnd 15,
nelec = 30,
ecutwfc = 40.0,
nrlb= 10, nr2b
xc_type = ’BLYP’

10, nr3b = 10,

/
&electrons
emass = 400.d0,
emass_cutoff = 2.5d0,
electron_dynamics = ’sd’,
/
&ions
ion_dynamics = ’none’,
/
&cell
cell_dynamics = ’none’,
press = 0.040,
/
ATOMIC_SPECIES
C 12.0d0 c_blyp_gia.pp
H 1.00d0 h.ps
ATOMIC_POSITIONS (bohr)

C 2.6 0.0 0.0
C 1.3 -1.3 0.0
C -1.3 -1.3 0.0
C -2.6 0.0 0.0
C -1.3 1.3 0.0
C 1.3 1.3 0.0
H .4 0.00.0

37



H 2.2 -2.2 0.0
H -2.2 -2.2 0.0
H -4.4 0.0 0.0
H -2.2 2.2 0.0
H 2.2 2.20.0

You can find the description of the input variables in file INPUT_CP in
the Doc/ directory. A short description of the logic behind the choice
of parameters in contained in INPUT.HOWTO

3. Sometimes a single run is not enough to reach the GS. In this case, you
need to re-run the electronic minimization stage. Use the input of the
first run, changing restart mode = ’from scratch’ to restart_mode
= ’restart’.

Important: unless you are already experienced with the system you
are studying or with the code internals, usually you need to tune some
input parameters, like emass, dt, and cut-offs. For this purpose, a few
trial runs could be useful: you can perform short minimizations (say,
10 steps) changing and adjusting these parameters to your need.

You could specify the degree of convergence with these two thresholds:
etot_conv_thr: total energy difference between two consecutive steps
ekin_conv_thr: value of the fictitious kinetic energy of the electrons

Usually we consider the system on the GS when ekin_conv_thr <~
10~°. You could check the value of the fictitious kinetic energy on the
standard output (column EKINC).

Different strategies are available to minimize electrons, but the most
used ones are:

e steepest descent:
electron_dynamics = ’sd’
e damped dynamics:

electron_dynamics = ’damp’,
electron_damping = 0.1,

See input description to compute damping factor, usually the
value is between 0.1 and 0.5.

4. Once your system is in the GS, depending on how you have prepared
the starting atomic configuration, you should do several things:

38



if you have set the atomic positions “by hand” and/or from a
classical code, check the forces on atoms, and if they are large (~
0.1—1.0 atomic units), you should perform an ionic minimization,
otherwise the sistem could break-up during the dynamics.

if you have taken the positions from a previous run or a previous
ab-initio simulation, check the forces, and if they are too small
(~ 10~* atomic units), this means that atoms are already in equi-
librium positions and, even if left free, they will not move. Then
you need to randomize positions a little bit. see below.

5. Minimize ionic positions.

As we pointed out in 4) if the interatomic forces are too high, the
system could ”explode” if we switch on the ionic dynamics. To avoid
that we need to relax the system.

Again there are different strategies to relax the system, but the most
used are again steepest descent or damped dynamics for ions and elec-
trons. You could also mix electronic and ionic minimization scheme
freely, i.e. ions in steepest and electron in damping or vice versa.

(a)

suppose we want to perform a steepest for ions. Then we should
specify the following section for ions:

&ions
ion_dynamics = ’sd’,

/

Change also the ionic masses to accelerate the minimization:

ATOMIC_SPECIES
C 2.0d40 c_blyp_gia.pp
H 2.00d0 h.ps

while leaving unchanged other input parameters.

Note that if the forces are really high (> 1.0 atomic units), you
should always use stepest descent for the first relaxation steps
(~ 100).

as the system approaches the equilibrium positions, the steepest
descent scheme slows down, so is better to switch to damped dy-
namics:

&ions
ion_dynamics = ’damp’,

39



ion_damping = 0.2,
ion_velocities = ’zero’,

/

A value of ion_damping between 0.05 and 0.5 is usually used for
many systems. It is also better to specify to restart with zero
ionic and electronic velocities, since we have changed the masses.
Change further the ionic masses to accelerate the minimization:

ATOMIC_SPECIES
C 0.1d0 c_blyp_gia.pp
H 0.1d0 h.ps

when the system is really close to the equilibrium, the damped
dynamics slow down too, especially because, since we are mov-
ing electron and ions together, the ionic forces are not properly
correct, then it is often better to perform a ionic step every N
electronic steps, or to move ions only when electron are in their
GS (within the chosen threshold).

This can be specified adding, in the ionic section, the ion nstepe
parameter, then the ionic input section become as follows:

&ions
ion_dynamics = ’damp’,
ion_damping = 0.2,
ion_velocities = ’zero’,

ion_nstepe = 10,

/

Then we specify in the control input section:

etot_conv_thr = 1.d4-6,
ekin_conv_thr 1.d4-5,
forc_conv_thr 1.4-3

As a result, the code checks every 10 electronic steps whether
the electronic system satisfies the two thresholds etot_conv_thr,
ekin _conv_thr: if it does, the ions are advanced by one step.
The process thus continues until the forces become smaller than
forc_conv_thr.

Note that to fully relax the system you need many run, and differ-
ent strategies, that you shold mix and change in order to speed-up
the convergence. The process is not automatic, but is strongly
based on experience, and trial and error.

40



Remember also that the convergence to the equilibrium positions
depends on the energy threshold for the electronic GS, in fact
correct forces (required to move ions toward the minimum) are
obtained only when electrons are in their GS. Then a small thresh-
old on forces could not be satisfied, if you do not require an even
smaller threshold on total energy.

6. randomization of positions.

If you have relaxed the system or if the starting system is already in
the equilibrium positions, then you need to move ions from the equilib-
rium positions, otherwise they won’t move in a dynamics simulation.
After the randomization you should bring electrons on the GS again,
in order to start a dynamic with the correct forces and with electrons
in the GS. Then you should switch off the ionic dynamics and acti-
vate the randomization for each species, specifying the amplitude of
the randomization itself. This could be done with the following ionic
input section:

&ions
ion_dynamics = ’none’,
tranp(1) = .TRUE.,
tranp(2) = .TRUE.,
amprp(1) = 0.01
amprp(2) = 0.01

/

In this way a random displacement (of max 0.01 a.u.) is added to atoms
of specie 1 and 2. All other input parameters could remain the same.

Note that the difference in the total energy (etot) between relaxed and
randomized positions can be used to estimate the temperature that will
be reached by the system. In fact, starting with zero ionic velocities,
all the difference is potential energy, but in a dynamics simulation, the
energy will be equipartitioned between kinetic and potential, then to
estimate the temperature take the difference in energy (de), convert it
in Kelvins, divide for the number of atoms and multiply by 2/3.

Randomization could be useful also while we are relaxing the system,
especially when we suspect that the ions are in a local minimum or in
an energy plateau.

7. Start the Car-Parrinello dynamics.

41



At this point after having minimized the electrons, and with ions dis-
placed from their equilibrium positions, we are ready to start a CP
dynamics. We need to specify ’verlet’ both in ionic and electronic
dynamics. The threshold in control input section will be ignored, like
any parameter related to minimization strategy. The first time we per-
form a CP run after a minimization, it is always better to put velocities
equal to zero, unless we have velocities, from a previous simulation, to
specify in the input file. Restore the proper masses for the ions. In this
way we will sample the microcanonical ensemble. The input section
changes as follow:

&electrons
emass = 400.d0,
emass_cutoff = 2.5d0,

electron_dynamics = ’verlet’,

electron_velocities = ’zero’,
&ions

ion_dynamics = ’verlet’,

ion_velocities = ’zero’,

ATOMIC_SPECIES
C 12.0d0 c_blyp_gia.pp
H 1.00d0 h.ps

If you want to specify the initial velocities for ions, you have to set
ion velocities = ’from input’, and add the IONIC_VELOCITIES
card, with the list of velocities in atomic units.

IMPORTANT: in restarting the dynamics after the first CP run, re-
member to remove or comment the velocities parameters:

&electrons
emass = 400.dO,
emass_cutoff = 2.5d0,

electron_dynamics = ’verlet’,

I electron_velocities = ’zero’,
&ions

ion_dynamics = ’verlet’,

I ion_velocities = ’zero’,

42



otherwise you will quench the system interrupting the sampling of the
microcanonical ensemble.

. Changing the temperature of the system.

It is possible to change the temperature of the system or to sample the
canonical ensemble fixing the average temperature, this is done using
the Nose thermostat. To activate this thermostat for ions you have to
specify in the ions input section:

&ions
ion_dynamics = ’verlet’,
ion_temperature = ’nose’,
fnosep = 60.0,
tempw = 300.0,
| ion_velocities = ’zero’,

where fnosep is the frequency of the thermostat in THz, this should be
chosen to be comparable with the center of the vibrational spectrum of
the system, in order to excite as many vibrational modes as possible.
tempw is the desired average temperature in Kelvin.

It is possible to specify also the thermostat for the electrons, this is
usually activated in metal or in system where we have a transfer of
energy between ionic and electronic degrees of freedom.

43



7 Performance issues (PWscf)

7.1 CPU time requirements

The following holds for code pw.x and for non-US PPs. For US PPs there
are additional terms to be calculated. For phonon calculations, each of the
3N, modes requires a CPU time of the same order of that required by a
self-consistent calculation in the same system.
The computer time required for the self-consistent solution at fixed ionic
positions, Ty, is:
Tscf = Niter : T‘iter + ,I‘im‘t

where Nj,, = niter = number of self-consistency iterations, Ty, = CPU
time for a single iteration, Ty,, = initialization time for a single iteration.
USU&Hy ﬂnit << Niter ' ﬂter-

The time required for a single self-consistency iteration Ty, is:

ﬂter = Nk : Tdiag + Trho + Tscf

where N}, = number of k-points, Ty;q, = CPU time per hamiltonian iterative
diagonalization, T}4, = CPU time for charge density calculation, Ts.; = CPU
time for Hartree and exchange-correlation potential calculation.

The time for a Hamiltonian iterative diagonalization Ty;q is:

Tdiag = Nh : Th + Torth + Tsub

where N, = number of Hv products needed by iterative diagonalization,
T, = CPU time per Hvy product, T,,;, = CPU time for orthonormalization,
Ty = CPU time for subspace diagonalization.

The time T}, required for a Ht product is

Th:a1-M-N+a2-M-N1-NQ-Ng-log(Nl-Ng-Ng)—f—ag-M-P-N.

The first term comes from the kinetic term and is usually much smaller
than the others. The second and third terms come respectively from local
and nonlocal potential. ai, as, asz are prefactors, M = number of valence
bands, N = number of plane waves (basis set dimension), Ny, Ny, N3 =
dimensions of the FFT grid for wavefunctions (Ny - Ny - N3 ~ 8N), P =
number of projectors for PPs (summed on all atoms, on all values of the
angular momentum [, and m =1,...,20 + 1)
The time T,,;, required by orthonormalization is

Tortn = by % M2 x N

44



and the time T, required by subspace diagonalization is
Tsub = b2 * ME

where by and by are prefactors, M, = number of trial wavefunctions (this will
vary between M and a few times M, depending on the algorithm).
The time T,, for the calculation of charge density from wavefunctions is

Trho = Cl'M'NTl'NTQ'N?"g'lOg(NTI'NTQ'NT3)+CQ'M'NT1'NTQ'N’I“?,—FTUS

where ¢y, ¢, c3 are prefactors, Nry, Nry, Nrg = dimensions of the FFT
grid for charge density (Nry - Nry - Nry ~ 8N,, where N, = number of G-
vectors for the charge density), and T, = CPU time required by ultrasoft
contribution (if any).

The time T.¢ for calculation of potential from charge density is

Tscf:dQ'er’NTQ'Nrg‘i‘dg’NTl'N?”Q'NT3~1Og(NT1-NTQ-N’I“g)

where d;, dy are prefactors.

7.2 Memory requirements

A typical self-consistency or molecular-dynamics run requires a maximum
memory in the order of O double precision complex numbers, where

O:mMN+PN+pN1N2N3+QNT1NT2NT3

with m, p, ¢ = small factors; all other variables have the same meaning as
above. Note that if the I-point only (q = 0) is used to sample the Brillouin
Zone, the value of N will be cut into half.

Code memory.x yields a rough estimate of the memory required by pw.x
and checks for the validity of the input data file as well. Use it exactly as
pw.X.

The memory required by the phonon code follows the same patterns, with
somewhat larger factors m, p, q.

7.3 File space requirements

A typical pw.x run will require an amount of temporary disk space in the
order of O double precision complex numbers:

O=Np,-M-N+¢q-Nry-Nry-Nrs

where ¢ = 2 - mixing ndim (number of iterations used in self-consistency,
default value = 8) if disk io is set to *high’ or not specified; ¢ = 0 if
disk_io=’low’ or ’minimal’.

45



7.4 Parallelization issues

pw.x can run in principle on any number of processors (up to maxproc,
presently fixed at 128 in PW/para.f90). The N, processors can be divided
into N, pools of N, processors, N, = Ny, * Np,. The k-points are divided
across Ny pools (“k-point parallelization”), while both R- and G-space grids
are divided across the N, processors of each pool (“PW parallelization”). A
third level of parallelization, on the number of bands, is currently confined
to the calculation of a few quantities that would not be parallelized at all
otherwise. A fourth level of parallelization, on the number of NEB images,
is available for NEB calculation only.

The effectiveness of parallelization depends on the size and type of the
system and on a judicious choice of the N, and N,:

e k-point parallelization is very effective if IV is a divisor of the num-
ber of k-points (linear speedup guaranteed), but it does not reduce the
amount of memory per processor taken by the calculation. As a con-
sequence, large systems may not fit into memory. The same applies to
parallelization over NEB images.

e PW parallelization works well if N, is a divisor of both dimensions
along the z axis of the FFT grids, N3 and Nrs (which may coincide).
It does not scale so well as k-point parallelization, but it reduces both
CPU time AND memory (the latter almost linearly).

e Optimal serial performances are achieved when the data are as much
as possible kept into the cache. As a side effect, one can achieve better
than linear scaling with the number of processors, thanks to the increase
in serial speed coming from the reduction of data size (making it easier
for the machine to keep data in the cache).

Note that for each system there is an optimal range of number of pro-
cessors on which to run the job. A too large number of processors will yield
performance degradation, or may cause the parallelization algorithm to fail
in distributing properly R- and G-space grids.

Note also that Beowulf-style machines (PC clusters) may have disappoint-
ing parallelization performances unless they have a decent communication
hardware (at least Gigabit ethernet). Do not expect good scaling with cheap
hardware: plane-wave calculations are not at all an "embarrassing parallel”
problem. Note that multiprocessor motherboards for Intel Pentium CPUs
typically have just one memory bus for all processors. This dramatically
slows down any code doing massive access to memory (as most codes in

46



the Quantum-ESPRESSO package do) that runs on processors of the same
motherboard.

47



8 Troubleshooting (PWscf)

Almost all problems in PWscf arise from incorrect input data and result in
error stops. Error messages should be self-explanatory, but unfortunately
this is not always true. If the code issues a warning messages and continues,
pay attention to it but do not assume that something is necessarily wrong in
your calculation: most warning messages signal harmless problems.

Note for PC Linux clusters in parallel execution: in at least some versions
of MPICH, the current directory is set to the directory where the executable
code resides, instead of being set to the directory where the code is executed.
This MPICH weirdness may cause unexpected failures in some postprocessing
codes that expect a data file in the current directory. Workaround: use
symbolic links, or copy the executable to the current directory.

Typical pw.x and/or ph.x (mis-)behavior:

pw.x yields a message like “error while loading shared libraries: ...
cannot open shared object file” and does not start. Possible reasons:

e If you are running on the same machines on which the code was com-
piled, this is a library configuration problem. The solution is machine-
dependent. On Linux, find the path to the missing libraries; then either
add it to file /etc/1d.so.conf and run ldconfig (must be done as
root), or add it to variable LD_LIBRARY PATH and export it. Another
possibility is to load non-shared version of libraries (ending with .a)
instead of shared ones (ending with .so).

e If you are not running on the same machines on which the code was
compiled: you need either to have the same shared libraries installed
on both machines, or to load statically all libraries (using appropri-
ate configure or loader options). The same applies to Beowulf-style
parallel machines: the needed shared libraries must be present on all

PC’s.

errors in examples with parallel execution If you get error messages in
the example scripts —i.e. not errors in the codes — on a parallel machine, such
as e.g. : “run_example: -n: command not found” you have forgotten
the ”¢ in the definitions of PARA_ PREFIX and PARA POSTFIX.

pw.x prints the first few lines and then nothing happens (parallel
execution). If the code looks like it is not reading from input, maybe
it isn’t: the MPI libraries need to be properly configured to accept input

48



redirection. See section “Running on parallel machines”, or inquire with
your local computer wizard (if any).

pw.x stops with error in reading. There is an error in the input data.
Usually it is a misspelled namelist variable, or an empty input file. Note that
out-of-bound indices in dimensioned variables read in the namelist may cause
the code to crash with really mysterious error messages. Also note that input
data files containing "M (Control-M) characters at the end of lines (typically,
files coming from Windows PC) may yield error in reading. If none of the
above applies and the code stops at the first namelist (“control”) and you are
running in parallel: your MPI libraries might not be properly configured to
allow input redirection, so that what you are effectively reading is an empty
file. See section “Running on parallel machines”, or inquire with your local
computer wizard (if any).

pw.x mumbles something like “cannot recover” or “error reading
recover file”. You are trying to restart from a previous job that either
produced corrupted files, or did not do what you think it did. No luck: you
have to restart from scratch.

pw.x stops with error in cdiagh or cdiaghg. Possible reasons:

e serious error in data, such as bad atomic positions or bad crystal struc-
ture/supercell;

e a bad PP (for instance, with a ghost);

e a failure of the algorithm performing subspace diagonalization. The
LAPACK algorithms used by cdiagh or cdiaghg are very robust and
extensively tested. Still, it may seldom happen that such algorithms
fail. In at least one case the failures was tracked to the non-positiveness
of the S matrix appearing in the US-PP formalism. In other cases, the
error is found to be non reproducible on different architectures and
disappearing if the calculation is repeated with even minimal changes
in its parameters. In both cases, the reasons for such behavior are
unclear and the only advice is to use conjugate-gradient diagonalization
(diagonalization=’cg’), a slower but very robust algorithm, and see
what happens.

e HP-Compaq alphas with cxml libraries: try to use compiled BLAS and
LAPACK (or better, ATLAS) instead of those contained in cxml (just
load them before cxml).

49



pw.x crashes with “floating invalid” or “floating divide by zero”.
If this happens on HP-Compaq True64 Alpha machines with an old version
of the compiler: the compiler is most likely buggy. Otherwise, move to next
item.

pw.x crashes with no error message at all. This happens quite often
in parallel execution, or under a batch queue, or if you are writing the output
to a file. When the program crashes, part of the output, including the error
message, may be lost, or hidden into error files where nobody looks into. It
is the fault of the operating system, not of the code. Try to run interactively
and to write to the screen. If this doesn’t help, move to next point.

pw.x crashes with “segmentation fault” or similarly obscure mes-
sages. Possible reasons:

e too much RAM memory requested (see next item).

e if you are using highly optimized mathematical libraries, verify that
they are designed for your hardware. In particular, for Intel compiler
and MKL libraries, verify that you loaded the correct set of CPU-
specific MKL libraries.

e buggy compiler. If you are using Portland or Intel compilers on Linux
PC’s or clusters, see section “Installation issues”.

pw.x works for simple systems, but not for large systems or when-
ever more RAM is needed. Possible solutions:

e increase the amount of RAM you are authorized to use (which may be
much smaller than the available RAM). Ask your system administrator
if you don’t know what to do.

e reduce nbnd to the strict minimum, or reduce the cutoffs, or the cell
size.

e use conjugate-gradient (diagonalization=’cg’: slow but very robust)
or DIIS (diagonalization=’diis’: fast but not very robust): both
requires less memory than the default Davidson algorithm.

e in parallel execution, use more processors, or use the same number of
processors with less pools. Remember that parallelization with respect
to k-points (pools) does not distribute memory: parallelization with
respect to R- (and G-) space does.

30



e IBM only (32-bit machines): if you need more than 256 MB you must
specify it at link time (option -bmaxdata).

e buggy or weird-behaving compiler. Some versions of the Portland and
Intel compilers on Linux PC’s or clusters have this problem. For Intel
ifort 8.1, the problem seems to be due to the allocation of large auto-
matic arrays that exceeds the available stack. Increasing the stack size
(with commands limits or ulimit) may solve the problem.

pw.x crashes in parallel execution with an obscure message related
to MPI errors. With LAM-MPI, add -D__LAM to preprocessing options in
make.sys and recompile. See info from Axel Kohlmeyer:
http://www.democritos.it/pipermail/pw_forum/2005-April/002338.html

pw.x runs but nothing happens. Possible reasons:

e in parallel execution, the code died on just one processor. Unpre-
dictable behavior may follow.

e in serial execution, the code encountered a floating-point error and goes
on producing NaN’s (Not a Number) forever unless exception handling
is on (and usually it isn’t). In both cases, look for one of the reasons
given above.

e maybe your calculation will take more time than you expect.

pw.x yields weird results. Possible solutions:

e if this happen after a change in the code or in compilation or prepro-
cessing options, try make clean and recompile. The make command
should take care of all dependencies, but do not rely too heavily on
it. If the problem persists, make clean and recompile with reduced
optimization level.

e maybe your input data are weird.

pw.x stops with error message “the system is metallic, specify oc-
cupations”. You did not specify state occupations, but you need to, since
your system appears to have an odd number of electrons. The variable
controlling how metallicity is treated is occupations in namelist &SYSTEM.
The default, occupations=’fixed’, occupies the lowest nelec/2 states and
works only for insulators with a gap. In all other cases, use ’smearing’ or
’tetrahedra’. See file INPUT_PW for more details.

o1


http://www.democritos.it/pipermail/pw_forum/2005-April/002338.html

pw.x stops with “unexpected error” in efermi. Possible reasons:

e serious error in data, such as bad number of electrons, insufficient num-
ber of bands, absurd value of broadening, or too few tetrahedra;

e the Fermi energy is found by bisection assuming that the integrated
DOS N(FE) is an increasing function of the energy. This is not guar-
anteed for Methfessel-Paxton smearing of order 1 and can give prob-
lems when very few k-points are used. Use some other smearing func-
tion: simple Gaussian broadening or, better, Marzari-Vanderbilt “cold
smearing” .

in parallel execution, pw.x stops complaining that “some processors
have no planes” or “smooth planes” or some other strange error.
Your system does not require that many processors: reduce the number of
processors to a more sensible value. In particular, both N3 and Nrs must
be > N, (see section [7] “Performance Issues”, and in particular section
“Parallelization issues”, for the meaning of these variables).

the FFT grids in pw.x are machine-dependent. Yes, they are! The
code automatically chooses the smallest grid that is compatible with the
specified cutoff in the specified cell, and is an allowed value for the FFT
library used. Most FFT libraries are implemented, or perform well, only
with dimensions that factors into products of small numers (2, 3, 5 typically,
sometimes 7 and 11). Different FFT libraries follow different rules and thus
different dimensions can result for the same system on different machines (or
even on the same machine, with a different FFT). See function allowed in
Modules/fft_scalar.f90.

As a consequence, the energy may be slightly different on different ma-
chines. The only piece that depends explicitely on the grid parameters is
the XC part of the energy that is computed numerically on the grid. The
differences should be small, though, expecially for LDA calculations.

Manually setting the FF'T grids to a desired value is possible, but slightly
tricky, using input variables nrl, nr2, nr3 and nrls, nr2s, nr3s. The
code will still increase them if not acceptable. Automatic FFT grid dimen-
sions are slightly overestimated, so one may try — very carefully — to reduce
them a little bit. The code will stop if too small values are required, it will
waste CPU time and memory for too large values.

Note that in parallel execution, it is very convenient to have FFT grid
dimensions along z that are a multiple of the number of processors.

52



“warning: symmetry operation # N not allowed”. This is not an er-
ror. pw.x determines first the symmetry operations (rotations) of the Bravais
lattice; then checks which of these are symmetry operations of the system
(including if needed fractional translations). This is done by rotating (and
translating if needed) the atoms in the unit cell and verifying if the rotated
unit cell coincides with the original one.

If a symmetry operation contains a fractional translation that is incom-
patible with the FFT grid, it is discarded in order to prevent problems with
symmetrization. Typical fractional translations are 1/2 or 1/3 of a lattice
vector. If the FFT grid dimension along that direction is not divisible re-
spectively by 2 or by 3, the symmetry operation will not transform the FFT
grid into itself.

pw.x doesn’t find all the symmetries you expected. See above to
learn how PWscf finds symmetry operations. Some of them might be missing
because:

e the number of significant figures in the atomic positions is not large
enough. In file PW/eqvect.£90, the variable accep is used to decide
whether a rotation is a symmetry operation. Its current value (107°)
is quite strict: a rotated atom must coincide with another atom to 5
significant digits. You may change the value of accep and recompile.

e they are not acceptable symmetry operations of the Bravais lattice.
This is the case for Cgg, for instance: the I, icosahedral group of Cgg
contains H-fold rotations that are incompatible with translation sym-
metry.

e the system is rotated with respect to symmetry axis. For instance: a
Cgo molecule in the fec lattice will have 24 symmetry operations (7},
group) only if the double bond is aligned along one of the crystal axis; if
Ceo is rotated in some arbitrary way, pw.x may not find any symmetry,
apart from inversion.

e they contain a fractional translation that is incompatible with the FFT
grid (see previous paragraph). Note that if you change cutoff or unit
cell volume, the automatically computed FFT grid changes, and this
may explain changes in symmetry (and in the number of k-points as a
consequence) for no apparent good reason (only if you have fractional
translations in the system, though).

e a fractional translation, without rotation, is a symmetry operation of
the system. This means that the cell is actually a supercell. In this

33



case, all symmetry operations containing fractional translations are dis-
abled. The reason is that in this rather exotic case there is no simple
way to select those symmetry operations forming a true group, in the
mathematical sense of the term.

the CPU time is time-dependent! Yes it is! On most machines and on
most operating systems, depending on machine load, on communication load
(for parallel machines), on various other factors (including maybe the phase
of the moon), reported CPU times may vary quite a lot for the same job.
Also note that what is printed is supposed to be the CPU time per process,
but with some compilers it is actually the wall time.

“warning : N eigenvectors not converged ...” This is a warning mes-

sage that can be safely ignored if it is not present in the last steps of self-
consistency. If it is still present in the last steps of self-consistency, and if the
number of unconverged eigevector is a significant part of the total, it may
signal serious trouble in self-consistency (see next point) or something badly
wrong in input data.

“warning : negative or imaginary charge...”, or “...core charge ...”,
or “npt with rhoup<0...” or "rhodw<0...”  These are warning mes-
sages that can be safely ignored unless the negative or imaginary charge is
sizable, let us say O(0.1). If it is, something seriously wrong is going on.
Otherwise, the origin of the negative charge is the following. When one
transforms a positive function in real space to Fourier space and truncates at
some finite cutoff, the positive function is no longer guaranteed to be positive
when transformed back to real space. This happens only with core correc-
tions and with ultrasoft pseudopotentials. In some cases it may be a source
of trouble (see next point) but it is usually solved by increasing the cutoff
for the charge density.

self-consistency is slow or does not converge. Reduce mixing beta
from the default value (0.7) to ~ 0.3 — 0.1 or smaller, or try a different
mixing mode. You may also try to increase mixing ndim to more than 8
(default value). Beware: the larger mixing ndim, the larger the amount of
memory you need.

If the above doesn’t help: verify if your system is metallic or is close to
a metallic state, especially if you have few k-points. If the highest occupied
and lowest unoccupied state(s) keep exchanging place during self-consistency,
forget about reaching convergence. A typical sign of such behavior is that

o4



the self-consistency error goes down, down, down, than all of a sudden up
again, and so on. Usually one can solve the problem by adding a few empty
bands and a broadening.

Specific to US PP: the presence of negative charge density regions due to
either the pseudization procedure of the augmentation part or to truncation
at finite cutoff may give convergence problems. Raising the ecutrho cutoff for
charge density will usually help, especially in gradient-corrected calculations.

structural optimization is slow or does not converge. Typical struc-
tural optimizations, based on the BFGS algorithm, converge to the default
thresholds ( etot_conv_thr and forc_conv_thr ) in 15-25 BFGS steps (de-
pending on the starting configuration). This may not happen when your
system is characterized by “floppy” low-energy modes, that make very diffi-
cult — and of little use anyway — to reach a well converged structure, no
matter what. Other possible reasons for a problematic convergence are listed
below.

Close to convergence the self-consistency error in forces may become large
with respect to the value of forces. The resulting mismatch between forces
and energies may confuse the line minimization algorithm, which assumes
consistency between the two. The code reduces the starting self-consistency
threshold conv_thr when approaching the minimum energy configuration, up
to a factor defined by upscale. Reducing conv_thr (or increasing upscale)
yields a smoother structural optimization, but if conv_thr becomes too small,
electronic self-consistency may not converge. You may also increase variables
etot_conv_thr and forc_conv_thr that determine the threshold for conver-
gence (the default values are quite strict).

A limitation to the accuracy of forces comes from the absence of perfect
translational invariance. If we had only the Hartree potential, our PW calcu-
lation would be translationally invariant to machine precision. The presence
of an exchange-correlation potential introduces Fourier components in the
potential that are not in our basis set. This loss of precision (more serious
for gradient-corrected functionals) translates into a slight but detectable loss
of translational invariance (the energy changes if all atoms are displaced by
the same quantity, not commensurate with the FFT grid). This sets a limit
to the accuracy of forces. The situation improves somewhat by increasing
the ecutrho cutoff.

ph.x stops with “error reading file”. The data file produced by pw.x
is bad or incomplete or produced by an incompatible version of the code.
In parallel execution: if you did not set wf_collect=.true., the number

95



of processors and pools for the phonon run should be the same as for the
self-consistent run; all files must be visible to all processors.

ph.x mumbles something like “cannot recover” or “error reading
recover file”. You have a bad restart file from a preceding failed execution.
Remove all files recover* in outdir.

ph.x says “occupation numbers probably wrong” and continues;
or “phonon + tetrahedra not implemented” and stops You have a
metallic or spin-polarized system but occupations are not set to “smearing”.
Note that the correct way to calculate occupancies must be specified in the
input data of the non-selfconsistent calculation, if the phonon code reads
data from it. The non-selfconsistent calculation will not use this information
but the phonon code will.

ph.x does not yield acoustic modes with w =0 at q = 0. This may
not be an error: the Acoustic Sum Rule (ASR) is never exactly verified,
because the system is never exactly translationally invariant as it should be
(see the discussion above). The calculated frequency of the acoustic mode
is typically less than 10 cm™!, but in some cases it may be much higher,
up to 100 cm™!. The ultimate test is to diagonalize the dynamical matrix
with program dynmat.x, imposing the ASR. If you obtain an acoustic mode
with a much smaller w (let’s say < lem™') with all other modes virtually

unchanged, you can trust your results.

ph.x yields really lousy phonons, with bad or negative frequencies
or wrong symmetries or gross ASR violations. Possible reasons:

e wrong data file file read.

e wrong atomic masses given in input will yield wrong frequencies (but
the content of file fildyn should be valid, since the force constants,
not the dynamical matrix, are written to file).

e convergence threshold for either SCF (conv_thr) or phonon calculation
(tr2_ph) too large (try to reduce them).

e maybe your system does have negative or strange phonon frequencies,
with the approximations you used. A negative frequency signals a
mechanical instability of the chosen structure. Check that the structure
is reasonable, and check the following parameters:

56



— The cutoff for wavefunctions, ecutwfc
— For US PP: the cutoff for the charge density, ecutrho

— The k-point grid, especially for metallic systems!

“Wrong degeneracy” error in star_q. Verify the g-point for which you
are calculating phonons. In order to check whether a symmetry operation
belongs to the small group of q, the code compares q and the rotated q,
with an acceptance tolerance of 107 (set in routine PW/eqvect.£90). You
may run into trouble if your g-point differs from a high-symmetry point by
an amount in that order of magnitude.

57



	Introduction
	Codes
	People
	Contacts
	Terms of use

	Installation
	Configure
	Libraries
	Manual configuration

	Compile
	Run examples
	Installation issues

	Running on parallel machines
	Pseudopotentials
	Using PWscf
	Electronic and ionic structure calculations
	Input data
	Typical cases

	Phonon calculations
	Calculation of interatomic force constants in real space
	Calculation of electron-phonon interaction coefficients

	Post-processing

	Using CP
	Performance issues (PWscf)
	CPU time requirements
	Memory requirements
	File space requirements
	Parallelization issues

	Troubleshooting (PWscf)

